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Electron clouds sometimes limit accelerator performance by their appearance when the circulating
bunch population exceeds a threshold value. Dynamical models of cloud buildup, and of the phase
transition from ‘‘cloud off’’ to ‘‘cloud on’’, are enhanced when simple coupling between electron and ion
clouds is included. Maps are then capable of reproducing the first order phase transitions sometimes seen
in practice. They also predict that hysteresis, period doubling, and chaotic phenomena may be observed.
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I. INTRODUCTION

Quasistationary seed electrons in the vacuum pipe of an
accelerator are accelerated in an impulse to an energy of
order 1 keV when a bunch of positive particles passes by.
These electrons strike the vacuum pipe wall, rapidly dis-
sipating and diffusing into an electron spectrum that has a
typical energy of only a few eV, until the next bunch passes
by, when the process is iterated. Under some conditions
electron multiplication occurs, and an electron cloud rap-
idly builds, until a stable dynamic equilibrium is attained.
The necessary conditions include vacuum chamber surface
characteristics [mainly given by the dependence of the
secondary emission yield (SEY) on the incident electron
energy], beam pipe geometry, and beam characteristics.
For a given bunch spacing and for a particular beam pipe,
electron clouds only build if the bunches have a large
enough positive charge. Electron clouds have been ob-
served in many accelerators, often acting as a fundamental
limit to machine performance through dynamical instabil-
ities, cryogenic heat loads, or unacceptably large associ-
ated vacuum pressure increases [1– 4].

Electron cloud evolution is modeled with some signifi-
cant success using complex simulation codes, typically
tracking individual electrons or macroparticles, and some-
times employing 3-dimensional finite-element methods to
calculate self-consistent forces and fields [5].

For the Relativistic Heavy Ion Collider (RHIC), it is
found that the simulated evolution from the passage of
bunch m to m� 1 is empirically well represented by a
cubic map [4,6]

 �m�1 � a�m � b�
2
m � c�

3
m; (1)

where �m is the linear electron cloud density. Weak elec-
tron clouds grow exponentially in time if a > 1 since

 �m � �0am: (2)

This exponential growth is finally limited due to the space

charge forces of the electron cloud itself, and an equilib-
rium is obtained when

 �m�1 � �m � ��: (3)

For example, if the cubic term in c is negligible, then the
equilibrium electron density is

 �� �
�

0; when a < 1
a�1
�b ; when a > 1:

(4)

Note a negative value of b is physically sensible, represent-
ing the self-limiting influence of accumulated (negative
electron) space charge. Values for the electron cloud map
coefficients are obtained from the empirical fits after run-
ning CPU intensive simulation codes [4,6].

An approximate analytical expression shows that the
‘‘bunch to bunch electron cloud gain’’ a can be interpreted
as the effective SEYof the vacuum chamber [4]. It depends
on: (1) the electron energy gain after the interaction with
the bunch passage, (2) the electron multiplication after
hitting the chamber wall, and (3) their survival until the
next bunch passes by, when the process is iterated.

A. Phase transitions

What happens as the bunch population slowly decays
away? Do the electron clouds collapse suddenly, or do they
slowly fade away?

For a fixed set of beam pipe parameters, the coefficient a
increases monotonically with the bunch population N, so
that the stable electron cloud density ���N� is also a
function of bunch population [4,6]. Equation (4) then
predicts that the phase transition from electron cloud
‘‘off’’ to ‘‘on’’ is second order—���N� increases smoothly
from zero above a critical threshold population, when a
becomes larger than unity. Complex simulation codes con-
sistently reproduce only second order phase transitions [7].

Enhanced vacuum pressures are correlated with the
direct observation of electron clouds. A linear relation
exists between the vacuum pressure P and the linear elec-
tron flux into the wall, �e [8]. Furthermore, the latter can
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also be related to the electron cloud density, � [9], so that

 P / �e / �: (5)

Hence, a first order phase transition in the pressure corre-
sponds to a first order phase transition in the electron cloud
density, and vice versa.

However, experimental data shown in Fig. 1 illustrate
how both first and second order phase transitions are seen
in RHIC, as a threshold bunch population is crossed. While
the pressure in IR12 smoothly decreases as the bunch
population slowly drops, an abrupt transition is seen in
IR10. This catastrophic collapse of the pressure is unex-
pected, especially since the surface parameters show a
smooth dependence on the impact electron energy at the
wall [10,11]. The failure of simulations to reproduce these
first order phase transitions, and of theory to predict them,
indicates that there is missing physics in the modeling.

B. Ion clouds

A candidate for additional physics is the interplay be-
tween electron clouds and positive ion clouds. An initial
analysis of the Large Hadron Collider (LHC) in Ref. [12]
concluded that this interplay would not significantly affect
accelerator performance. Nonetheless, it is introduced to
explain experimental observations at RHIC [13], and more
recently it has been reconsidered for the LHC [14].

Figure 2 depicts a pressure instability in the unbaked
collimator region at RHIC, where ‘‘L shaped’’ copper
blocks are placed in a chamber with larger aperture than
IR10 and IR12. The instability shows a slow exponential
growth (growth time, �g � 10 s) that occurs when the
bunch length is reduced by rf rebucketing. A bunch length
reduction increases the electron density [4,8]. This points
towards the existence of a feedback mechanism in which
the pressure is crucially involved. This instability is proba-

bly caused by partial ionization of the rest gas by the beam
and the electron cloud, and it is described by [13]

 P �
Q0 � �ekTL�e=e
S� �ionLb0

; (6)

where Q0 is the static gas load, �e is the electron induced
molecular desorption coefficient, k is Boltzmann’s con-
stant, T is the temperature, e is the absolute electron
charge, 2L is the distance between two consecutive vac-
uum pumps, 2S is the pumping speed, and �ion is the ion
induced molecular desorption coefficient. The parameter
b0 is given by [13]

 b0 � ��ed�e � �bIb�=e; (7)

where�e is the cross section for rest gas ionization from an
impact of cloud electrons, d is the beam pipe diameter, �b
is the cross section for rest gas ionization by the beam, and
Ib is the beam current.

Models of this interplay face two main challenges: a
significant number of uncertain surface physics parameters
for both electron and ions, and extremely different time
scales for electron and ion cloud dynamics. Long ion life-
times imply very long CPU times for simulations. Not only
is the typical time of flight between surfaces much longer
for a massive ion than for an electron of similar kinetic
energy, but also the backscattering probability for ion
energies below	30 eV is close to unity [15]. The lifetime
of such ions is not only characterized by their time of flight,
but also by vacuum pumping times that are often measured
in seconds. Therefore, electron clouds evolve with a time
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FIG. 1. (Color) First and second order electron cloud phase
transitions observed in the interaction regions IR10 and 12 of
the Relativistic Heavy Ion Collider. The data were taken as the
bunch population slowly decayed during beam fill 5905. The
actual copper ion bunch population is converted to an equivalent
average number of protons per bunch.
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FIG. 2. (Color) A vacuum instability with gold beams in RHIC
[13]. The upper plot shows the evolution of the beam intensity
for both rings during injection, acceleration, and at the beginning
of a store. The bottom plot shows the pressure instability that
occurred in the collimator region of the blue ring when rf
rebucketing significantly shrank the length of the circulating
bunches.
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scale on the order of 1 �s, while ion clouds evolve between
three and six orders of magnitude more slowly.

Next, we show how maps can be used to circumvent
these challenges and give an improved intuitive under-
standing of the coupled evolution of electron and ion
clouds. Coupled maps also show how, at least in principle,
first order phase transitions can occur.

II. COUPLED MAPS AND FIXED POINTS
STABILITY

In a map model, the interplay between electron clouds
and ion clouds is generally expressed by

 �m�1 � f��m; Rm� (8)

 Rm�1 � g��m; Rm�; (9)

where Rm is the linear ion cloud density after the passage
of the mth bunch. Both �m and Rm are defined to be
positive, and their convenient units are (nC=m).

In the following, we use the vector ~r for the electron and
ion densities

 ~r m �
�m
Rm

� �
: (10)

A fixed point is found when

 ~r m�1 � ~rm � ~r�; (11)

that is to say, when

 �m�1 � �m � ��; Rm�1 � Rm � R�: (12)

Furthermore, we need the fixed point to be stable. That
is, small perturbations around the fixed point ~r� must result
in an evolution that converges towards the fixed point.

Close to a fixed point ~r�, the linear motion in one time
step from bunch passage m to m� 1 is

 

~r m�1 � J~rm; (13)

where J is the 2
 2 Jacobian matrix

 J �
@f
@�m

@f
@Rm

@g
@�m

@g
@Rm

 !
~r�

(14)

that determines the stability of the fixed point through its
trace and determinant. Appendix A shows that a fixed point
is stable if one of the two following pairs of conditions is
fulfilled:

 �i� t2 < d2; and d2 < 1 (15)

 �ii� t2 > d2; and jtj �
���������������
t2 � d2

p
< 1; (16)

where the convenient definitions

 t � Tr�J2�=2 (17)

 d � det�J� (18)

have been introduced. If neither of these conditions ap-
plies, then the motion diverges. Appendix A shows, more-
over, that two different motions can be obtained around the
fixed points: elliptical or hyperbolic. Figure 3 shows the
stability regions in �t; d� space. Note that these stability
conditions are valid for any form of the functions f and g,
representing a broad spectrum of potential coupling
mechanisms.

III. A SIMPLE COUPLED MAPS MODEL

In order to visualize the phenomena that these condi-
tions can generate, we use an example for the functions f
and g based on the cubic map for the electron density
[Eq. (1)]. Consider the ‘‘proof-of-principle’’ coupled maps

 �m�1 � �a� yRm��m � b�2
m � c�3

m (19)

 Rm�1 � ARm � Y�m: (20)

If the coupling coefficients are turned off (y � Y � 0),
then the electron cloud map Eq. (1) is recovered, along
with the uncoupled ion map

 Rm�1 � ARm: (21)

Values of A slightly larger than unity correspond to an
exponential growth (as in Fig. 2), while values smaller
than unity correspond to ion cloud clearance, for example,
through vacuum pumping and neutralization. Since mas-
sive ion clouds only clear slowly, we expect A � 1.

There are two coupling mechanisms in Eqs. (19) and
(20):

(1) Electrons generate a positive ion cloud by colliding
with the rest gas in the vacuum chamber. This is
represented by the term Y�m in Eq. (20). Y is
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FIG. 3. (Color) Stability regions as a function of the parameters t
and d [Eqs. (17) and (18)], obtained from the Jacobian matrix.
Above the 45� line the motion shows elliptical behavior, while
below it the motion is hyperbolic.
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positive, but its order of magnitude is not trivially
apparent.

(2) The slow moving positive ions enhance the proba-
bility of electron survival between one bunch pas-
sage and the next. This is represented by the term
yRm, and has been written in Eq. (19) as an addition
to the linear bunch to bunch gain a. Moreover, the
presence of an ion cloud also tends to neutralize the
negative electron space charge of the accumulated
electron cloud. This is stressed rewriting Eq. (19) as

 �m�1 � a�m � �yRm � b�m��m � c�
3
m: (22)

For these reasons, physical values of y are positive,
typically smaller than a, and of the same magnitude
as b, so y < a and y	 jbj.

In this example, the electron cloud densities at the fixed
points correspond to the roots of the cubic equation

 �� � a�� � b0��2 � c��3; (23)

where the ‘‘effective space charge coefficient’’

 b0 � b� �yY=�A� 1� (24)

has been conveniently introduced. One of the 3 roots (�� �
0) is trivial. The 2nd and 3rd roots,

 �� �
�b0 �

���������������������������������
b02 � 4c�a� 1�

p
2c

(25)

are only physical if their values are real and positive.
Finally, the stationary ion density is simply related to the

stationary electron density by

 R� � �
Y

A� 1
�� (26)

[recall that Y is positive and �A� 1� is negative].

A. Numerical application

Next, we assume that all the coupled map coefficients
are constants except for the bunch to bunch electron cloud
gain, a. From the fitting results in Refs. [4,6], we presume
that a depends linearly on the bunch population according
to

 a � 0:4� 0:1�N=1010�: (27)

The coupled map coefficient values used throughout below
and quoted in Table I are illustrative—they are not in-
tended to quantitatively reproduce RHIC results.

The right-hand side of Eq. (23) is plotted in Fig. 4 for
three bunch populations. The fixed point solutions are
found where these curves intersect with the left-hand side

of Eq. (23)—that is, the identity map or the 45� line.
Figure 4 shows that three fixed electron densities exist
for N � 5:0
 1010 protons/bunch: ��1 � 0 nC=m, ��2 �
0:69 nC=m, and ��3 � 1:81 nC=m. Calculating the
Jacobian matrix at the three solutions, their corresponding
stability is obtained using Eqs. (15) and (16):

(1) The first fixed point ~r�1 � �0; 0� shows
(i) t2 < d2 ! elliptic motion

(ii) d2 < 1! convergence
as shown in the left plot of Fig. 5.

(2) The second fixed point ~r�2 � �0:69; 0:52� shows
(i) t2 > d2 ! hyperbolic motion

(ii) jtj �
���������������
t2 � d2
p

> 1! divergence
as shown in the middle plot of Fig. 5.

(3) The third fixed point ~r�3 � �1:81; 1:357� shows
(i) t2 > d2 ! hyperbolic motion

(ii) jtj �
���������������
t2 � d2
p

< 1! convergence
as shown in the right plot of Fig. 5.

Note that Eq. (27) sets a � 0:9< 1 for N � 5
 1010

protons/bunch. According to the first order uncoupled map
[Eq. (2)], this does not produce any electron cloud (stable
or unstable). However, the presence of a coupled ion cloud
enhances the electron survival, and stable and nonzero
electron clouds are created even when a < 1. Enhanced
electron survival due to the presence of an ion cloud is also
considered in Ref. [16], but the ion cloud density is not
allowed to evolve.

B. First order phase transitions and hysteresis

These conditions lead to a first order phase transition,
and to hysteresis. Figure 6 shows the results of a dynamical

TABLE I. Map parameters used in the following examples.

a b c y A Y

Equation (27) �0:1 �0:08 0.4 0.96 0.03
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FIG. 4. (Color) Three different representations of the right-hand
side (RHS) of Eq. (23) corresponding to N � 3, 5, and N �
7
 1010 protons/bunch. The straight line shows the left-hand
side (LHS) of Eq. (23). Intersections between the RHS and LHS
of Eq. (23) mark the stationary electron densities. Two nonzero
solutions exist for N � 5
 1010 protons/bunch: at �� � 0:69
and �� � 1:81 nC=m. Their stability is examined in Fig. 5.
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simulation, in which the coupled maps are applied directly,
first as the bunch population is slowly decreased, and then
as it is slowly increased. The solid line shows that the
stable electron cloud density decreases as the bunch popu-
lation is reduced, until at N � 4:7
 1010 the electron
cloud collapses catastrophically. When the bunch popula-
tion is then slowly increased, no electron (or ion) cloud
forms up to a population of N � 6:0
 1010, when the
cloud grows rapidly to a stable stationary value.

Figure 7 shows the flow in ��; R� space for different
bunch populations: N � 3, 5, and 7
 1010 protons/bunch.
These plots result from tracking several simulations with
different initial conditions. For N � 3
 1010 (left plot),
all trajectories are attracted to the global attractor at the
~r� � �0; 0� fixed point. Similar behavior is found for N �
7
 1010 (right plot), where all trajectories converge to the
global attractor at ~r� � �2:9; 2:17�, no matter what initial
conditions are used. Note that there is also a fixed point
global repeller at ~r� � �0; 0�.

However, the situation is different for N � 5
 1010

protons/bunch (middle plot in Fig. 7). Two different basins
of attraction coexist: one corresponding to the fixed point
~r� � �0; 0�, the second corresponding to the fixed point
~r� � �1:81; 1:357�. This feature is the origin of the hys-
teresis and the first order phase transitions. The boundary
between the two basins moves to the upper right of the plot
as the bunch population smoothly decreases below N �
5:0
 1010, until the two nonzero fixed points coincide at
about N � 4:7
 1010 protons/bunch. At this point the
second basin disappears, and all trajectories collapse to
~r� � �0; 0�, no matter what their initial conditions.

In this model the presence of either first or second order
phase transitions depends on the values of the map coef-
ficients, which produce ion cloud densities comparable to
electron cloud densities, �	 R. The coefficients have been
adjusted to show how first order phase transitions may
come about (as in Fig. 1, IR10), but they can also be
adjusted to reproduce second order phase transitions (as
in Fig. 1, IR12), or the slow indefinite growth (as in the
collimator region in the blue ring in Fig. 2). It is only
necessary to postulate that the different materials and
geometries in the different RHIC sections produce differ-
ent values for the map coefficients (different desorption
coefficients, SEY, etc.).

The importance of the model stems from its ability to
show the possibility of abrupt transitions even with a
smooth dependence of the map coefficients on electron
cloud parameters (such as bunch population or length).
Recall that all coefficients remain constants except a,
which changes linearly with the bunch intensity.

IV. ADDITIONAL DYNAMICAL PHASES

The coupled map difference equations can be rewritten

 ��=�t � ��a� 1� � b�� yR�� c�3 (28)
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FIG. 6. (Color) Evolution of the electron cloud density as the
bunch population N is first slowly decreased, and then slowly
increased. The precipitous and hysteretic behavior is character-
istic of first order phase transitions. The dashed lines represent
the two stationary solutions described in Eq. (25).
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 �R=�t � �A� 1�R� Y�; (29)

where the nominal time step �t � 1 corresponds to the
passage of a single bunch. The coupled differential equa-
tions that are obtained in the limit that �t! 0 exhibit
stable cloud solutions that conform to the classical sta-
tionary solutions of Eq. (25). By contrast, Fig. 6, with �t �
1, shows agreement with the classical stationary stable
solution (upper dashed line) only up to about N � 8:0

1010, above which different dynamical phases become
active.

Figure 8 shows the evolution of the electron and ion
clouds for different bunch populations, always starting
with the same (arbitrary) initial cloud densities. The clouds
decay away or build to stable solutions with N � 3
 1010

or 6
 1010 protons per bunch, respectively, consistent
with classical expectations (see Fig. 6). However, the
clouds evolve into a stable period-2 oscillation when N �
9
 1010 protons/bunch. Figure 9 takes a closer look at the
chaotic dynamics that evolve whenN � 12
 1010 protons
per bunch. In these cases, a crucial effect of the coupling is
to change the sign of the effective space charge coefficient
b0—positive ions neutralize the negative space charge of
the electrons, permitting different physical stationary
solutions.

Difference equations are inherently richer than the
analogous differential equations, in the dynamical behav-
ior that they display. In this case, coupled maps enhance
the generation of period doubling and chaos, behavior that
does not occur in the smoothed world of differential equa-
tions. Such additional dynamical phases have not (yet)
been observed in electron clouds in accelerators, but it is
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possible they occur at, or near, typical operating condi-
tions. An understanding of coupled cloud dynamics from
the map perspective may prove important in enhancing
accelerator performance.

V. CONCLUSIONS

Bunch-by-bunch maps are more appropriate than differ-
ential equations in modeling coupled cloud dynamics,
because of the rapid evolution of the electron cloud—the
high frequency components—after the violent transient of
a bunch passage. In particular, the electron cloud energy
spectrum changes enormously between bunch passages,
with typical electron energies dropping from of order
1 keV to a only a few eV.

The ‘‘proof-of-principle’’ form of the coupled maps
presented here can generate electron and ion clouds that
turn on and off precipitously even with smooth and con-
tinuous dependence of the map coefficients (like the bunch
to bunch gain a) on the electron cloud parameters (like the
bunch intensity, N). Such first order phase transitions are
sometimes seen in practice, but are beyond the capability
of contemporary simulation codes, which model electron
clouds in isolation. Other coupling mechanisms than those
presented here are also plausible, and can be modeled
within the same general map formalism.

ACKNOWLEDGMENTS

We wish to acknowledge the support of many people in
the Collider-Accelerator Department at Brookhaven
National Laboratory, including M. Blaskiewicz, W.
Fischer, H. C. Hseuh, and S. Y. Zhang. We would like to
especially thank the effort of P. Thieberger for his support
and his enlightening discussions.

APPENDIX: LINEAR MOTION CONVERGENCE
NEAR A FIXED POINT

The 2 by 2 Jacobian matrix J from Eq. (14) at the fixed
point can be decomposed as

 J �
�������������
det�J�

p
M1; (A1)

where M1 is a unimodular 2 by 2 matrix, with

 det�M1� � 1: (A2)

Since J is a real matrix, then either
�������������
det�J�

p
andM1 are both

real, or they are both imaginary, depending on the sign of
det�J�.

Considering instead the two-step motion

 ~r n�2 � J2 ~rn (A3)

and using the identity

 det�J2� � det
2
�J� (A4)

then the decomposition

 J2 � det�J�M (A5)

now conveniently guarantees that both M and

 d � det�J� (A6)

are always real, although d may be negative. The equation
of motion is now solved simply as

 

~r 2n � dnMn ~r0: (A7)

The question now is ‘‘how does Mn behave?’’
Next, solve for the two eigenvalues of M, �� and ��, in

the equation

 Mv � �v; (A8)

where v� and v� are the eigenvectors. In other words

 det�M� �I� � 0; (A9)

which is solved by

 �� �
1
2�Tr�M� �

������������������������
Tr2�M� � 4

q
: (A10)

For convenience, introduce the notation

 T�A� � 1
2Tr�A�; (A11)

where A is a general matrix, so that the eigenvalues are
written more compactly as

 �� � T�M� �
�����������������������
T2�M� � 1

q
: (A12)

There are now two possibilities— either the two-step
motion represented by M is elliptical, or it is hyperbolic.

1. Elliptical motion

The easiest case is if

 T2�M�< 1: (A13)

In this case the eigenvalues are both complex, with unit
length

 j��j � 1 (A14)

so that motion is elliptical around the fixed point, spiraling
in to converge on the fixed point if

 jdj< 1 (A15)

or spiraling out and ‘‘escaping’’ if

 jdj> 1: (A16)

2. Hyperbolic motion

Slightly more complicated is the case if

 T2�M�> 1: (A17)

In this case the eigenvalues are both real and the motion is
hyperbolic around the fixed point. If the initial vector is
decomposed as
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 x0 � c�v� � c�v�; (A18)

then for arbitrary n

 x2n � dn�c��n�v� � c��n�v��: (A19)

As time goes to infinity n! 1 the eigenmode with the
larger absolute eigenvalue

 j�1j � jT�M�j �
�����������������������
T2�M� � 1

q
(A20)

comes to dominate, so that

 x2n � c1�d�1�
nv1: (A21)

This shows that, even though the motion is hyperbolic, it
will still converge to the fixed point if (and only if)

 jd�1j< 1: (A22)

Using the substitution

 T�M� �
T�J2�

d
; (A23)

this condition is rewritten to explicitly depend only on J, as

 jT�J2�j �
�������������������������
T2�J2� � d2

q
< 1: (A24)

3. Summary

With the convenient definitions

 t �
Tr�J2�

2
(A25)

 d � det�J�: (A26)

Then, if

 t2 < d2 (A27)

the motion is elliptical, converging to the fixed point if

 d2 < 1: (A28)

On the other hand, motion is hyperbolic if

 t2 > d2: (A29)

but nonetheless still converges to the fixed point if

 jtj �
���������������
t2 � d2

p
< 1: (A30)

If neither of these pairs of conditions applies, then the
motion diverges from the fixed point.
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